当前位置:首页 > 技术文章
植物叶绿素荧光成像系统采用箱体式外观,内置多波段LED用于测量光、饱和脉冲及反射率测量。基于机器视觉成像原理进行叶绿素荧光成像,从而计算植物生长、胁迫,育种,突变株筛选相关等科学研究;滤光系统允许叶绿素荧光波段光线进入传感器并成像。不同于传...
随着社会的发展,科学技术的发展推动了红外光谱技术的发展,同时也使得近红外光谱分析技术在食品等领域得到了广泛的使用,大大提高了检测效率,因而备受欢迎!红外光谱技术可识别带壳霉变板栗近红外光谱技术快速准确识别带壳霉变板栗的新方法,可以取代人工,快速、准确、无损地进行带壳板栗的品质检测和分选,大大提高了效率和效益,同时也为其它带壳坚果物料的自动化检测分选提供了技术借鉴。近红外光谱技术可利用全谱或部分波段的光谱数据对农产品的品质进行检测,该研究组的前期工作表明,近红外光谱技术结合模式...
短波红外相机与可见光十分相似,不同的是短波红外的波长可以“绕过”烟、雾、霾中的细小颗粒;相比中波红外、长波红外,短波红外拥有更好的细节分辨和解析能力,能够很好的识别出该目标是。这就使得短波红外在雾霾、烟雾浓重的情况下,仍可对物体清晰成像。短波红外相机具有以下特点:1、高识别度:短波红外SWIR成像主要基于目标反射光成像原理,其成像与可见光灰度图像特征相似,成像对比度高,目标细节表达清晰,在目标识别方面,SWIR成像是热成像技术的重要补充;2、全天候适应:短波红外SWIR成像受...
微透镜阵列是由通光孔径及浮雕深度为微米级的透镜组成的阵列。它和传统透镜一样,最小功能单元也可以是球面镜、非球面镜、柱镜、棱镜等,同样能在微光学角度实现聚焦、成像,光束变换等功能,而且因为单元尺寸小、集成度高,使得它能构成许多新型的光学系统,完成传统光学元件无法完成的功能。可分为折射型微透镜阵列与衍射型微透镜阵列两类。折射型(ROE)微透镜阵列:基于几何光学的折射原理,光在两种透明介质交界处(如空气和玻璃),将向折射率高的区域弯折。材料的折射率越高,入射光发生折射的能力越强。通...
多光谱相机是在普通航空照相机的基础上发展而来的。多光谱照相是指在可见光的基础上向红外光和紫外光两个方向扩展,并通过各种滤光片或分光器与多种感光胶片的组合,使其同时分别接收同一目标在不同窄光谱带上所辐射或反射的信息,即可得到目标的几张不同光谱带的照片。多光谱成像技术自从面世以来,便被应用于空间遥感领域。而随着搭载平台的小型化和野外应用的需求,光谱成像仪在农业、林业、军事、医药、科研等领域的需求也越来越大。而在此之前成像技术并没有那么高,只能对特定的单一的谱段进行成像。虽然分辨率...
原理分类:为了获得不同波长的图像,目前有四种原理的高光谱相机:点扫描,线扫描,光谱扫描和快照。点扫描就是一次获得一个点的光谱数据,成像设备是个分光仪。可以用在卫星上,需要两个方向的自由度。线扫描就是一次获得一条线上的光谱数据,成像设备是个光谱仪和灰度相机。由于光谱分辨率高,成像比较快,目前应用最多。光谱扫描就是一次获得一个波段的图像,成像设备是个可调的滤光片和灰度相机。快照就是一次获得一个立体的高光谱图像。目前应用比较多的是通过多通道的滤光片来实现。成像快,但是光谱分辨率低。...